Moduli of Flat Conformal Structures of Hyperbolic Type

نویسنده

  • GRAHAM SMITH
چکیده

To each flat conformal structure (FCS) of hyperbolic type in the sense of Kulkarni-Pinkall, we associate, for all θ ∈ [(n − 1)π/2, nπ/2[ and for all r > tan(θ/n) a unique immersed hypersurface Σr,θ = (M, ir,θ) in H of constant θ-special Lagrangian curvature equal to r. We show that these hypersurfaces smoothly approximate the boundary of the canonical hyperbolic end associated to the FCS by Kulkarni and Pinkall and thus obtain results concerning the continuous dependance of the hyperbolic end and of the KulkarniPinkall metric on the flat conformal structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformally Flat Structures and Hyperbolic Structures

We define an abelian group, the conformal cobordism group of hyperbolic structures, which classifies the hyperbolic structures according to whether it bounds a (higher dimensional) conformally flat structure in a conformally invariant way. We then construct a homomorphism from this group to the circle group, using the eta invariant. The homomorphism can be highly nontrivial. It remains an inter...

متن کامل

Quasiconformal Stability of Kleinian Groups and an Embedding of a Space of Flat Conformal Structures

We show the quasiconformal stability for torsion-free convex cocompact Kleinian groups acting on higher dimensional hyperbolic spaces. As an application, we prove an embedding theorem of a space of flat conformal structures on a certain class of compact manifolds.

متن کامل

Topic Proposal: Translation Surfaces and Teichmüller Theory

Pick a unit vector v ∈ R, and consider the dynamical system on the flat torus R/Z defined by ft(z) = z + tv. This dynamical system is very well understood. For example, if v ∈ Q, then all trajectories are closed, and if not, then all trajectories are dense. In fact much more is known. In an attempt to generalize this example, we see immediately the problem that other closed surfaces do not poss...

متن کامل

Convex Rp Structures and Cubic Differentials under Neck Separation

Let S be a closed oriented surface of genus at least two. Labourie and the author have independently used the theory of hyperbolic affine spheres to find a natural correspondence between convex RP structures on S and pairs (Σ, U) consisting of a conformal structure Σ on S and a holomorphic cubic differential U over Σ. The pairs (Σ, U), for Σ varying in moduli space, allow us to define natural h...

متن کامل

Nonlinear Gravitons, Null Geodesics, and Holomorphic Disks

We develop a global twistor correspondence for pseudo-Riemannian conformal structures of signature (++−−) with self-dual Weyl curvature. Near the conformal class of the standard indefinite product metric on S2 × S2, there is an infinitedimensional moduli space of such conformal structures, and each of these has the surprising global property that its null geodesics are all periodic. Each such c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009